kubler编码器日常会遇到哪些常见问题? 库伯勒编码器是将信号或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和式两类。分辨率又称位数、脉冲数、几线制针对增量型编码器来讲便是轴旋转一圈编码器输出的脉冲个数;针对绝对Hengstler编码器而言,则等同于把一圈360°等分成多少份,比如说分辨率是256P/R,则相当于把一圈360°等分成了256,每旋转1.4°左右输出一个码值。分辨率的单位是P/R。 一:如何理解输出相? kubler增量型指输出信号数。包括1相型(A相)、2相型(A相、B相)、3相(A相、B相、Z相)。Z相输出1次即输出1次原点用的信号。 二:如何理解输出相位差? 轴旋转时,将A相、B相各信号相互间上升或下降中的时间偏移量与信号1周期时间的比,或者用电气角表示信号1周期为360°。 A相、B相用电气角表示为90°的相位差。 三:如何理解CW/CCW? CW即顺时针旋转(ClockWise)的方向,如下图所示。在这个旋转方向中,通常增量型为A相比B相先进行相位输出,绝对型为代码增加方向与CW反方向旋转时为CCW(CounterClockWise),如下图所示。在这个旋转方向中,通常增量型为B相比A相先进行相位输出,绝对型为代码减少方向。 四:如何理解最高响应频率和准许最高转速? 最高响应频率便是编码器电气上最大能响应的频率数,假如在高于这个参数的频率下应用,则编码器内部电路会无法响应,会造成编码器漏脉冲的情况出现,最高响应频率单位为Hz。 准许最高转速通常是指编码器的轴机械运动时,能够承受的最高转速,高于这个参数,则编码器的轴也许会损坏。准许最高转速单位为r/min。 特别注意:具体应用时,这两项参数都需考虑到,必须都小于这两相参数规定的值,才可以常规应用。 五:如何理解上升时间、下降时间? 上升时间:输出脉冲从10%上升到90%的时间。 下降时间:输出脉冲从90%下降到10%的时间 德国kubler编码器是将信号或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。它还可以用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。 常见的光电编码器由光栅盘,发光元件和光敏元件组成。光栅实际上是一个刻有规则透光和不透光线条的圆盘,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经整形后,变为脉冲信号,每转一圈,输出一个脉冲。根据脉冲的变化,可以精确测量和控制设备位移量。 接触式编码器----采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1"还是“0"。 非接触式编码器----接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1"还是“0"。 增量式编码器----将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。在转轴旋转时,有相应的脉冲输出,其计数起点任意设定,可实现多圈无限累加和测量。 绝对式编码器----直接输出数字量的传感器,常用于电机定位或测速系统。因其每一个角度位置都对应的数字编码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器----以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。 多圈绝对式编码器----运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,由机械位置确定编码,每个位置编码不重复,而无需记忆。 KUBLER库伯勒编码器的日常遇到的问题就介绍到这里了,希望对各位有帮助
|